Huang, G. B., Song, S. and You, K. (2015). Trends in extreme learning

chines: a review, Neural Networks, 61, pp. 32–48.

B., Zhou, H., Ding, X. and Zhang, R. (2012). Extreme learning machine for

ression and multiclass classification, IEEE Trans Systems Man Cybernetics B

bernetics, 42, pp. 513–529.

M., Bernatsky, S., Colmegna, I., Lora, M., Pastinen, T., Klein Oros, K. and

enwood, C. M. T. (2017). Novel insights into systemic autoimmune rheumatic

eases using shared molecular signatures and an integrative analysis, Epigenetics,

pp. 433–440.

pas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., von Mering, C.

Bork, P. (2017). Fast genome-wide functional annotation through orthology

gnment by eggnog-Mapper, Molecular Biology and Evolution, 34, pp. 2115–

2.

e, Q., Shen, X. and Stojkovic, V. (2008). A probabilistic coding based quantum

netic algorithm for multiple sequence alignment, Computational Systems

oinformatics Conference, 7, pp. 15–16.

, Cho, S., Chung, H. and Woo, Y. (2005). Nondestructive determination of the

broxol content in tablets by Raman spectroscopy, Journal of Pharmaceutical

d Biomedical Analysis, 38, pp. 210–215.

Kanavati, F., Kato, K., Rambeau, M., Arihiro, K. and Tsuneki, M. (2020). Deep

rning models for histopathological classification of gastric and colonic epithelial

mours, Scientific Reports, 10, pp. 1504.

n, S. G., Pfeifer, G. P. and Szabo, P. E. (2011). Reprogramming of the paternal

ome upon fertilization involves genome-wide oxidation of 5-methylcytosine.

ceedings of the National Academy of Sciences of the United States of America,

, pp. 3642–3647.

V. A., Ivanisenko, T. V., Saik, O. V., Demenkov, P. S., Afonnikov, D. A. and

chanov, N. A. (2019). Web-based computational tools for the prediction and

lysis of posttranslational modifications of proteins, Methods in Molecular

logy, 1934, pp. 1–20.

S., Yadollahi, A., Arab, M. M., Soltani, M., Eftekhari, M., Sabzalipoor, H.,

ikhi, A. and Shiri, J. (2019). Combining gene expression programming and

etic algorithm as a powerful hybrid modeling approach for pear rootstocks

ue culture media formulation, Plant Methods, 15, pp. 136.

Ramirez, R. N., El-Ali, N. C., Gomez-Cabrero, D., Tegner, J., Merkenschlager,

Conesa, A. and Mortazavi, A. (2019). Building gene regulatory networks from

ATAC-seq and scRNA-seq using Linked Self Organizing Maps, PLoS

mputational Biology, 15, pp. e1006555.

and Sibson, R. (1971). Mathematical Taxonomy, (Wiley, London).

., Millet, J. K. and Whittaker, G. R. (2020). Proteolytic cleavage of the SARS-

V-2 spike protein and the role of the novel S1/S2 site, iScience, 23, pp. 101212.

(1972). Econometric Methods, (McGraw-Hill, second ed, NewYork).